

Recap

Fields : Sets where we can do arithmetic, $+ : F \times F \rightarrow F$
e.g. \mathbb{Q} , \mathbb{R} , \mathbb{C} , \mathbb{F}_p $\bullet : F \times F \rightarrow F$

Vector Spaces : Sets where we can add and scale
 $+ : V \times V \rightarrow V$, $\cdot : F \times V \rightarrow V$
e.g. \mathbb{R}^d , polynomials $\mathbb{R}[x]$, \mathbb{R} over \mathbb{Q} ,
continuous functions $C([0,1], \mathbb{R})$

Basis : Linearly independent set B s.t. $\text{Span}(B) = V$

Lagrange interpolation : For distinct $a_1, \dots, a_n \in F$

$$f_i = \prod_{j \neq i} (x - a_j) \quad \forall i \in [n] \quad \text{basis for } \mathbb{F}^{\leq n-1}(x)$$

Unknown f with $f(a_1) = b_1, \dots, f(a_n) = b_n$

can be found as $f(x) = \sum \frac{b_i}{f_i(a_i)} \cdot f_i(x)$

Application: Secret Sharing [Shamir '79]

Share secret $s \in [0, M]$ with n people s.t.

- If any d get together, they learn s
- Fewer than d do not get any information

Scheme

- Choose \mathbb{F}_p with $p > \max\{n, M\}$
- Choose (random) $c_1, \dots, c_{d-1} \in \mathbb{F}_p$ and take
$$Q(x) = s + c_1 \cdot x + \dots + c_{d-1} \cdot x^{d-1}$$
- Person i gets $(i, Q(i))$ for $i = 1, \dots, n$

Any d people can find s

- Say people a_1, \dots, a_d get together
- Let $b_1 = Q(a_1), \dots, b_d = Q(a_d)$
- Use Lagrange interpolation to find unique f
s.t. $f(a_1) = b_1, \dots, f(a_d) = b_d$. Must have $f \in Q$.
- Output $s = f(0)$

Fewer than d people learn nothing

- For any $(a_1, Q(a_1)), \dots, (a_{d-1}, Q(a_{d-1}))$ and any $s' \in \mathbb{F}_p$, $\exists f$ s.t. $f(a_i) = Q(a_i)$ and $f(0) = s'$.

Research Question: Anonymous Secret Sharing [Con 25]

Back to Bases

LI set B s.t. $\text{Span}(B) = V$. } How do we check this?

- B is a basis $\Leftrightarrow B$ is a maximal LI set
 $B \cup \{v\}$ is LD for any $v \notin B$.

Proof: (\Leftarrow)

$\text{Span}(B) = V$
Pick $\underset{\text{any}}{v \in V}$, say $v \notin B$ (easy otherwise)

$B \cup \{v\}$ is LD

$$c_0 v + \sum c_i \cdot v_i = 0 \quad v_i \in B, \quad c_0 \neq 0$$

$$v = -c_0^{-1} \cdot \sum c_i \cdot v_i = \sum (-c_0^{-1} \cdot c_i) \cdot v_i \in \text{Span}(B)$$

Building a basis: Steinitz Exchange Principle

- Let $\{v_1, \dots, v_k\}$ be LI and $\{v_1, \dots, v_k\} \subseteq \text{Span}\{w_1, \dots, w_n\}$

Then $\forall i \in [k] \exists j \in [n]$ s.t.

- $(\{v_1, \dots, v_k\} \setminus \{v_i\}) \cup \{w_j\}$ is LI
- $w_j \notin \{v_1, \dots, v_k\} \setminus \{v_i\}$

Proof: Suppose not. Then $\exists i \forall j w_j \in \text{Span}(\{v_1, \dots, v_k\} \setminus \{v_i\})$

$$\Rightarrow \text{Span}(\{w_1, \dots, w_n\}) \subseteq \text{Span}(\{v_1, \dots, v_k\} \setminus \{v_i\})$$

But $v_i \in \text{Span}(\{w_1, \dots, w_n\})$

$\therefore v_i \in \text{Span}(\{v_1, \dots, v_k\} \setminus \{v_i\}) \rightarrow \text{contradiction!}$

All (finite) bases have equal sizes

Let $B_1 = \{v_1, \dots, v_k\}$ and $B_2 = \{w_1, \dots, w_n\}$

be two bases for V . Then $k = n$.

Proof: Repeatedly remove a v , add a w

$$\{v_1, \dots, v_k\} \text{ LI}, \{v_1, \dots, v_{k-1}\} \subseteq \text{Span}(\{w_1, \dots, w_n\})$$

$$\therefore k \leq n$$

$$\{w_1, \dots, w_n\} \text{ LI}, \{w_1, \dots, w_{n-1}\} \subseteq \text{Span}(\{v_1, \dots, v_k\})$$

$$\therefore n \leq k$$

Finitely generated vector spaces

► (Defn) : V is called **finitely generated** if $\exists T \subseteq V$ s.t.
 T is finite and $\text{Span}(T) = V$.

Ex: Any finitely generated space V has a basis

(which is a subset of the generating set T)

- Finitely generated spaces have at least one basis.
- Sizes of any two bases B_1, B_2 are equal.

Called **dimension** of $V = \dim(V)$

Ex: Let S be any LI set with $|S| = \dim(V)$.
Then S is a basis

$\Rightarrow^{(\text{claim})}$ Let $S \subseteq V$ be any LI set, for finitely gen. V .

Then S can be extended to a basis.

$(\exists \text{ basis } B \text{ s.t. } S \subseteq B)$

Say $S = \{v_1, \dots, v_k\}$

while $\exists v \in V$ s.t. $v \notin \text{Span}(S)$

$S \leftarrow S \cup \{v\}$

If T is a generating set, there is a basis of size $\leq |T|$

\therefore Above loop cannot go on for more than $|T|$ steps.

What if V is not finitely generated?

Examples:

- Polynomials $\mathbb{R}[x]$ over \mathbb{R}
- \mathbb{R} over the field \mathbb{Q}

Can still find basis B s.t. $V = \text{Span}(B) = \left\{ \sum_{i=1}^n c_i \cdot v_i \mid \begin{array}{l} v_1, \dots, v_n \in B \\ c_1, \dots, c_n \in \mathbb{F} \\ n \in \mathbb{N} \end{array} \right\}$

Need axiom of choice (Zorn's lemma) to show the existence of such a basis (Hamel basis). See notes.

Every vector space has a basis!

Linear Transformations

► (Defn) V and W vector spaces over **same \mathbb{F}** .

$\varphi: V \rightarrow W$ is called a linear transformation if

- $\varphi(v_1 + v_2) = \varphi(v_1) + \varphi(v_2) \quad v_1, v_2 \in V$
- $\varphi(c \cdot v) = c \cdot \varphi(v) \quad c \in \mathbb{F}, v \in V$

Ex: Show that for any linear $\varphi: V \rightarrow W$, $\varphi(0_V) = 0_W$.

E.g. $A \in \mathbb{R}^{m \times n}$ defines $\varphi_A: \mathbb{R}^n \rightarrow \mathbb{R}^m$

$$\varphi_A(v) = Av$$

Examples (or not) ?

- $\varphi: C([0, 1], \mathbb{R}) \rightarrow C([0, 2], \mathbb{R})$. $\varphi(f)(x) = f(x/2)$

$$\varphi(f_1 + f_2)(x) = (f_1 + f_2)(x/2) = f_1(x/2) + f_2(x/2) = \varphi(f_1)(x) + \varphi(f_2)(x)$$

- $\varphi: C([0, 1], \mathbb{R}) \rightarrow C([0, 1], \mathbb{R})$. $\varphi(f)(x) = f(x^2)$

$$\varphi(f_1 + f_2)(x) = (f_1 + f_2)(x^2) = f_1(x^2) + f_2(x^2) = \varphi(f_1)(x) + \varphi(f_2)(x)$$

- $\varphi: \text{Fib} \rightarrow \text{Fib}$ defined as $\varphi(f)(n) = f(n+1)$

$$\varphi(f_1 + f_2)(n) = (f_1 + f_2)(n+1) = f_1(n+1) + f_2(n+1) = \varphi(f_1)(n) + \varphi(f_2)(n)$$

- derivative $\frac{d}{dx}: \mathbb{R}[x] \rightarrow \mathbb{R}[x]$